服务热线

13103866733
网站导航
主营产品:
产品展示
当前位置: 首页 > 产品中心

机械振动力学:单自由度振动系统——受迫

发布时间:2022-09-18 16:02:17 来源:火狐体育门户 作者:火狐体育下注

内容简介:  具有粘性阻尼的系统,自由振动会逐渐衰减,并最终停下来。但是,当系统受到外界动态作用力的持续激励时,系统的振动将会持续下去。系统在外界持续激励下引起的振动称为强迫振动,它是系统对外部激励过程的响应。系统的响应是指外界的激振所引起系统的振动状态,如位移、速度和加速度等。系统的激励可以是力,也可以是位移、速度和加速度。  激励随时间变化的规律可以分为,简谐激励、非简谐周期性激振和随时间任意变化的非周期性激振。简谐激振力是按正弦或余弦函数规律变化的力,如偏心质量引起的离心力,载荷不均或传动不均衡产生的冲击力等;非简谐激振力,如凸轮旋转产生...

详细介绍

  具有粘性阻尼的系统,自由振动会逐渐衰减,并最终停下来。但是,当系统受到外界动态作用力的持续激励时,系统的振动将会持续下去。系统在外界持续激励下引起的振动称为强迫振动,它是系统对外部激励过程的响应。系统的响应是指外界的激振所引起系统的振动状态,如位移、速度和加速度等。系统的激励可以是力,也可以是位移、速度和加速度。

  激励随时间变化的规律可以分为,简谐激励、非简谐周期性激振和随时间任意变化的非周期性激振。简谐激振力是按正弦或余弦函数规律变化的力,如偏心质量引起的离心力,载荷不均或传动不均衡产生的冲击力等;非简谐激振力,如凸轮旋转产生的激振、单缸活塞-连杆机构的激振力等;随时间变化的任意激振力,如爆破载荷的作用力,也可以是位移、速度和加速度。

  谐波激励是最简单的激励,系统在谐波激励下的响应也是简谐的。对于线性系统,谐波激励及其响应均满足叠加原理,复杂谐波的激励可以分解为一系列简谐激励,然后再对每一个简谐激励的响应叠加,即可获得总的响应。谐波激励下的响应问题是强迫振动中最简单、最基础的问题。

  从方程的通解可以看出,振动的位移由自由振动、受迫振动两部分组成。教科书中通常在此引入阻尼,这样振动在阻尼的作用下自由振动部分逐渐衰减,若干周期后只剩下受迫振动部分。这一点并不符合初始的无阻尼假设,只是简化分析上的考虑,但是应该看到受迫振动部分才是整个解中值得关注的关键部分。

  由F=kx,可令Bs=f0/k,它相当于激振力幅值f0 静作用在弹簧上所产生的静变形。

  由此可见,强迫振动的频率与激振力的频率相同,即系统的强迫振动与激振力具有相同的变化规律;强迫振动的振幅决定于系统本身的物理性质,激振力的大小和频率比与初始条件无关;其振幅比由频率比决定。

  当λ<1时,随着λ 的增大,即ω 增大,振幅比B/Bs 也相应地增加,系统的振幅增大;振幅比B/Bs 为正,受迫振动与激振力同相,所以受迫振动与激振力之间的相位角ψ=0。

  λ 很小 (ωωn) 时,振幅比B/Bs ≈1,即B=Bs ,振幅B 几乎与激振力幅值引起弹簧的静变形Bs 相等,此时系统的静特性是主要的。

  λ1(ωωn) 时,振幅比B/Bs 趋近于0,当激振频率ω 远远超过系统的固有频率ωn时,振幅反而很小。

  λ=1(ω=ωn)时,振幅比B/Bs 无穷大,即受迫振动的振幅将达到无穷大,即出现共振现象。

  对于确定的系统而言,共振振幅B 与激振力的大小,作用时间成正比;与固有频率成反比。由此可见,固有频率越低越危险,激振力越大振幅越大,作用时间越长振幅越大。因此,在共振不可避免时,可以从这三个方面入手控制共振强度(振幅)。

  它的通解可以用二阶线性常系数齐次微分方程的通解x1(t ) 与方程的特解x2(t ) 之和表示,即:X=x1(t )+x2(t )。

  在有阻尼的情况下,x1(t ) 只在振动初期某一较短的时间有意义,随着时间的增加,它将逐渐衰减殆尽。

  频率比λ对振幅B 的影响。当λ 很小 (ωωn) 时,振幅比B/Bs≈1,即B=Bs,振幅B 几乎与激振力幅值引起弹簧的静变形Bs 相等;当λ1(ωωn) 时,振幅比B/Bs 趋近于0,振幅B 很小;当λ≈1(ω≈ωn) 时,在ζ 较小的情况下,振幅B 则很大,在无阻尼状态下,振幅比B/Bs 趋于无穷大,受迫振动的振幅将达到无穷大,即出现共振现象。使振幅或振幅比达到极值的频率称为共振频率,用ωr 表示;ωd为有阻尼固有频率,ωn 为无阻尼固有频率。求解极值可得:

  阻尼比ζ 对振幅的影响。当,有阻尼时的幅频响应曲线 的幅频响应曲线的下方,这说明阻尼的存在使得振幅B变小;当,在ωωn 和ωωn 时,计算振幅可以不计阻尼的影响;当,在共振区内,振幅的大小对阻尼敏感,其幅值随着阻尼增加而迅速减小,因此该区域为阻尼敏感区。在共振区内可以通过增加阻尼来有效地减小系统的振动幅度,但在共振区外阻尼对减小系统的振幅的作用非常有限。

  当激励频率很低时,相位角滞后很少,说明振动位移几乎与激励是相同的。但随着激励频率的增加,相位角滞后程度增大。

  与无阻尼系统一样,有阻尼受迫振动系统的总响应也由自由振动和受迫振动两个部分构成。初始阶段,自由振动和受迫振动同时存在于系统之中,由于阻尼的存在,系统总响应中的自由振动分量会很快被衰减殆尽。在系统达到稳态振动之前的振动过程,称为过渡过程。

  [1] 闻邦椿 等编著 机械振动理论及应用[M],北京:高等教育出版社,2009.5(2015.1重印)[2] 鲍文博 等编著 振动力学基础与Matlab应用[M],北京:清华大学出版社,2015(2019.8重印)

  [3] 陈奎孚 编著 机械振动基础[M],北京:中国农业大学出版社,2010.12[4] 顾海明,周勇军 编,机械振动理论与应用[M], 南京:东南大学出版社 2007.2

 


产品咨询

留言框

  • 产品名称:

  • 留言内容:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 详细地址:

Copyright © www.baidengwang.com 火狐体育全站app官网下载  豫ICP备40251641号-1 网站地图 XML地图 技术支持:火狐体育下注

地址:郑州市二七区马寨镇学院路36号 电话:13103866733 邮箱:65390779@qq.com

关注我们